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Abstract 
Well logging is a widely used geophysical method to gather information from subsurface rocks and establish 

lithological classification. However, the criteria of lithological classification are loosely defined and human error 

can significantly contribute to the uncertainty of the interpretation. This study uses machine learning approaches 

to classify rock types from well logs of the Snake River Plain (SRP) in Idaho. To achieve the comprehensive 

results, three machine learning algorithms, K-nearest neighbour (K-nn), Support Vector Machine (SVM), and 

Extreme Gradient Boosting (XGB) are employed on fifteen types of well logs from four geothermal wells in the 

SRP under three experimental conditions. In the first experiment, the classifiers are trained and tested with data 

from the same well in the train:test ratio of 7:3. The second scenario assigns data from three wells as a training 

subset and the remaining well as test subset. The third experiment uses the largest amount of data as a training 

subset, which combines data from three wells and 70% of the data from the remaining well. Hyperparameters in 

all classifiers are optimized to enhance model performance. Results suggest that SVM and K-nn exhibit 

comparable performance in all experiments, resulting in 89.68% (s = 10.40) and 88.84% (s = 9.92) of average 

accuracy, respectively. XGB shows the highest prediction accuracy in this study with average prediction 

accuracy at 90.67% (s = 8.21). This is largely because XGB partitions data into subgroups based on available 

features iteratively until every class is clearly separated from each other. In addition, XGB can recognize missing 

values in well logs and does not use these values for classification. XGB further indicates that gamma ray, 

neutron, and temperature are the top three important features that are used to improve the prediction accuracy.   
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1. Introduction 
Well logging is a widely used 

geophysical method to gather information from 

subsurface rocks. The main advantages of well 

logging include high vertical resolution, good 

continuity, and convenient data acquisition 

(Xie et al., 2018). Compared to other 

geophysical methods such as resistivity, 

gravity, and magnetic surveys, well logs has a 

significantly higher resolution, and is collected 

every 30 - 50 cm (Soltani et al., 2016). Data are 

continuously collected along exploration wells, 

and well logging can gather information both 

while drilling and after drilling. After a 

massive amount of subsurface information is 

gathered, it is interpreted to gain insights into 

the lithology and physical properties of the 

rock formation. However, the criteria of 

lithological classification are loosely defined, 

and human error can significantly contribute to 

the uncertainty of the interpretation. Previously 

there have been many mathematical methods 

such as deconvolution, noise filter, and signal 

stacking applied to well logging data to reduce 

the error of interpretation (Dubois et al., 2007). 

Recently, machine learning algorithms have 

been introduced to solve problems in pervasive 

fields such as regression, feature extraction, 

and classification (Tsangaratos and Ilia, 2016). 

Machine learning algorithms use statistical 

techniques to train models. Without being 

explicitly programmed, they can compute 

quickly and accurately for many tasks, 

including when the data is very noisy, and the 

task is non-linear, or requires no explicit 

knowledge (Devak et al., 2015). 

Many machine learning algorithms 

have been developed for various data types 

such as text, picture, and video (Wu and Zhao, 

2018). Each algorithm uses different theories 

being appropriate for the disparate dataset. This 

study aims to compare the ability of three 

machine learning approaches in rock 

classification in order to ascertain the 
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applicable algorithm for well logging data. This 

task uses 15 features of well logging data 

collected from four geothermal wells in the 

Snake River Plain (SRP) located in Idaho 

(Figure 1). The SRP is characterized by high 

heat flow and temperature gradients and is 

considered one of the largest active geothermal 

systems in the US (Tester et al., 2006). Three 

machine learning algorithms: K-nearest 

neighbour (K-nn), Support vector machine 

(SVM), and Extreme Gradient Boosting (XGB) 

are selected because they implement three 

theories for classification. Moreover, the 

chosen algorithms are suitable for well logging 

data because they do not require any conditions 

or assumptions on the dataset. Some algorithms 

such as Naive Bayes classifier requires specific 

condition which assumes independent features.  

 

 

To achieve comprehensive results, the 

algorithms are employed under three 

experimental conditions. In the first scenario, 

well logging data from each well are 

independent of each other. The algorithms are 

trained and tested with the data from the same 

well. However, in a real use case, machine 

learning algorithms should be trained by data 

from other wells, and then applied to classify 

data from new wells. In the second and third 

scenarios, the data from each of wells are 

combined as a training subset and the rest of 

data are used as test subset. The second 

scenario assigns data from three wells as a 

training subset and the remaining well as test 

subset. The third scenario uses the largest 

amount of data as a training subset, combining 

data from three wells and 70% of the data from 

the remaining well. By adding the second and 

third scenarios, our study is much more close to 

the application in the real world. Our study is a 

comparison of three approaches to general 

lithological classification. There is no class 

which is more important than other classes. 

Hence, precision, recall, and f1 score are not 

tested for this dataset. In this task, the 

classifiers are evaluated using classification 

accuracy scores and confusion matrices. 

 

2. Study Area 

Well logs and well reports from four 

geothermal wells (WO2, Mountain Home, 

Kimma, and Kimberly) in the Snake River 

Plain (SRP), published by Idaho National 

Figure 1 Location of four study wells (Mountain Home (MH), Kimma, Kimberly, and WO2) in Snake 

River Plain located in Idaho, USA. (Shervais et al., 2013) 
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Laboratory, are used in this study. The location 

of the four wells is shown in Figure 1. The 

depth in each well varies from 2000 m to 4000 

m. Each well has over 8,000 data points. There 

is a total of fifteen types (features) of well logs 

and 9 rock types (classes). Although these 

wells are located near each other, collected 

features and lithological classification are 

different, as shown in Table 1 and 2. 

 

Table 1 Available well-logs (features) in WO2, 

Mountain Home (MH), Kimma, Kimberly in 

the SRP. 
 

Well logs 

(Feature) 

Well name 

WO2 MH Kimma Kimberly 

Gamma 

ray 

Tempera-

ture 

Pressure 

Rmud 

Rd 

Rs 

Thorium 

Uranium 

Potas-

sium 

Vp 

Vs 

Vw 

Density 

Porosity 

Neutron 

✓ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

✓ 

✓ 

✓ 

✓ 

 

✓ 
 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 
 

✓ 

✓ 

✓ 

✓ 
 

✓ 
 

✓ 

 
✓ 

✓ 

 

 

 

 
 

✓ 

✓ 

✓ 

 

✓ 
 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

 

✓ 

✓ 

Note: Rmud refers to Resistivity in mud 

measurement, Rd refers to Resistivity in deep 

measurement, Rs refers to Resistivity in 

shallow measurement, Vp refers to p-wave, Vs 

refers to s-wave, and Vw refers to water wave 

speed. 

 

 

 

 

Table 2 Rock types (classes) in WO2, 

Mountain Home (MH), Kimma, Kimberly in 

the SRP. 
 

Rock 

type 

(Classes) 

Well name 

WO2 MH Kimma Kimberly 

BS 

CS 

CG 

SS 

ST 

TF 

VP 

SR 

RH 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

 ✓ 

 

 

 

 

 

 

 

 ✓ 

  ✓ 

 

 

 

 

 

 

 

  ✓ 

✓ 

 

 

 

 

 

 

 

✓ 

✓ 

Note: BS refers to Basalt, CS refers to 

Claystone, CG refers to Conglomerate, SS 

refers to sandstone, ST refers to siltstone, TF 

refers to Tuff, VP refers to Vitrophyre, SR 

refers to Sedimentaty rock, RH refers to 

rhyolite 

 

Snake River Plain (SRP) was formed 

due to extension tectonic and magmatic 

processes (Bedrosian and Feucht, 2014; 

Humphreys, 1995). In the early Mesozoic Era, 

the Farallon plate subducted below the North 

American plate. This provided a major tectonic 

feature in West American. After the subducted 

Farallon plate failed, fragments of the Farallon 

plate beneath the North American plate melted 

in the mantle. This caused widespread 

volcanism along the west side of the North 

American plate. The fragments of the Farallon 

plate were renamed Juan de Fuca plate and 

Cocos plate (Lonsdale, 2005). During the Early 

Cretaceous period, worldwide plate motion 

changed. The Pacific plate began moving to the 

north, away from the North American plate. As 

a result, the Juan de Fuca subduction 

rollbacked in this period. This subduction 

rollback caused the North American plate to 

move westward over the Yellowstone hotspot 

and extend along the west of the North 
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American plate (Aly et al., 2009; DeNosaquo et 

al., 2009). 

 

3. Machine learning algorithms 

3.1 K-nearest neighbor 

K-nearest neighbour (K-nn) is a 

straightforward machine learning algorithm 

used widely for both classification and 

regression tasks (Glowacz and Glowacz, 2016). 

It is a non-parametric and lazy classifier, 

meaning that it does not generalize or add any 

assumption to data. This classifier employs a 

feature similarity assumption in which data 

from the same class should have the same 

pattern of features. The K nearest data points of 

a dataset around test data are sought, and test 

data points are classified by the most popular 

class of K nearest data (Rastegarzadeh and 

Nemati, 2018). K-nn has to keep every data 

point in the database to calculate K nearest 

neighbour for every time of classification. The 

efficiency of K-nn is mostly dependent on the 

database because it does not apply any 

assumption to the dataset (Steinbach and Tan, 

2009). K-nn cannot emphasize some features 

like the other classifiers since feature selection 

is crucial for K-nn. K is a tuning parameter 

which determines the number of nearest data 

points taken into consideration. 

 

3.2 Support Vector Machine 

Support Vector Machine (SVM) 

generates a function that represents the 

relationship between features and classes from 

training data and uses it to classify test data. 

SVM defines the decision boundaries 

separating each class from other classes based 

on training data, and applies it to predict data 

from test subset (De Boissieu et al., 2018). 

There are multiple ways to draw the decision 

boundaries but SVM generates optimal 

boundaries by maximizing margins (Bishop, 

2006; Xie et al., 2018). SVM considers only 

some data near the class boundaries (support 

vectors) to maximize the margin. As a result, 

SVM can avoid outliers and overfitting 

(Smirnoff et al., 2008). SVM creates decision 

surfaces with a linear function thus cannot 

solve the non-linearity problem. Consequently, 

kernel functions or kernel tricks are applied to 

map input data to a higher dimension and 

linearly separate the data. For this study, Radial 

Basis Function (RBF) kernel which maps data 

into an infinite dimension is assigned to this 

dataset. The concept of SVM with RBF is to 

put a Gaussian decision surface onto every data 

point with Kernel coefficient for ‘RBF’ (γ) 

defining a surface spread. Some error, called 

soft margin, is acceptable to generalize the 

model (De Boissieu et al., 2018; Fan et al., 

2018). The number of misclassified data points 

are controlled by the Penalty parameter (C). 

For this study, C and γ are tuned to optimize 

model performance. 

  

3.3 Extreme Gradient Boosting 

 Extreme Gradient Boosting (XGB) is a 

highly efficient and generalized decision tree 

based algorithm. This classifier generates many 

decision trees and then combines the results 

from every tree by vote (Carmona et al., 2018). 

Decision trees define if-clause conditions to 

partitions data into subdivisions based on their 

features iteratively until every class of training 

dataset is clearly separated from each other 

(Friedl and Brodley, 1997). By doing this, 

decision trees have the capacity to select the 

helpful features and to determine the unused 

value (missing value). Each decision tree is 

built up sequentially through the knowledge of 

previous trees by XGB and becomes more 

effective than the previous one. The size of the 

tree is restricted for conserving computational 

costs, allowing XGB more simplified and 

generalized than other tree classifiers (Fan et 

al., 2018). There are various parameters that 

affect the performance of XGB, but only three 

parameters are adjusted for this study: learning 

rate (how much the model changes in each 

iteration), min child weight (the minimum 
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number of samples at each leaf node), and max 

depth (the maximum depth of an individual 

tree) (Chen and Guestrin, 2016). 

 

4. Methodology 

4.1 Pre-processing 
 Well logging data are correlated with 

lithology from well reports. After every data 

point is labeled, the process of cleaning data 

begins. Data points which have less than three 

features and also negative data points are 

removed. A problem with this dataset is 

missing data. There are various techniques to 

tackle this problem, including, replacing 

missing value with the mode or creating a new 

algorithm to predict the missing value. 

However, we do not have much data to do that 

so we replace the missing data points with -

999.25 instead. We aim that our model will 

recognize -999.25 is a missing value. After pre-

processing is finished, the data are prepared for 

each experiment in the next process. 

 

4.2 Data training, model building, and 

model evaluation 
The data are divided into training, 

validation, and test subsets depending on each 

experiment while preserving class distribution 

using stratified sampling (Figure 2). The 

training dataset is used to train the classifiers. 

The validation dataset is applied to determine 

the optimal tuning parameters. The test dataset 

is employed in order to grain the classification 

accuracy and confusion matrix. However, when 

machine learning algorithms are optimized on 

one dataset, the model can overfit to the 

specific dataset. To ameliorate generalization 

and hinder overfitting with one dataset, each 

classifier is trained and tested 5 times with 

different sampling data. 

 

 

 
 

Figure 2 A diagram shows stratified sampling 

where the data are split while class distribution 

remains constant. 

4.3 Test experiments 
Machine learning algorithms are 

employed under three conditions to a simulate 

real-world application for this study. In the first 

scenario (Experiment I), well logging data from 

each well are randomly split into training 

(70%), validation (10%), and test (20%) 

subsets, and then used to train and test with all 

three classifiers. For this experiment, well 

logging data and classes of each well are kept 

independent from those of other wells.  

The second scenario (Experiment II) 

assigns data from three wells as training data 

and the remaining one well as test data. As 

there are four wells in this dataset, the test data 

is also permuted between wells four times until 

every well has been the test data. The 

validation subset is randomly selected from 

10% of each training well. Data from three 

wells are combined together since it should be 

transformed into the same format. Lithology is 

reclassified into three classes for this condition: 

basalt, sedimentary rock, and other because 

some classes such as rhyolite, vitrophyre, and 

tuff do not appear in every well. If a class is not 

presented in the training data, the classifiers 

cannot classify it in the test phase. 

Consequently, rhyolite, vitrophyre, and tuff 

were grouped into other, and claystone, 

conglomerate, sandstone, and siltstone were 

merged with sedimentary rock. For this 

experiment, only gamma ray was a helpful 

predictive feature. We tried to add the other 

features but they gave worse results than only 

gamma ray.  

The third experiment (Experiment III) 

uses the largest amount of data as a training 
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subset, combining data from three wells and 

70% of the data from the remaining well. Then 

the remaining data are separated into validation 

(10%) and test (20%) subsets. This scenario 

was created to solve the problem in the second 

scenario where some classes were not included 

in the training data. Lithology is grouped into 

five classes: basalt, sedimentary rock, tuff, 

vitrophyre, and rhyolite. Features are prepared 

into 15 features while missing values are filled 

with -999.25. As some features were not 

collected in every well, their values are -999.25 

in some wells. For example, the values of 

temperature logs are -999.25 in every data 

point in WO2 well. 

 

4.4 Hyperparameter tuning  
  Hyperparameter or tuning parameter is 

essential to improving the performance of 

machine learning algorithms. A robust 

parameter selection process (tuning) is a 

process which ranks the accuracy of each 

classifier with different parameters to obtain 

the optimal parameters for each algorithm. 

Tuning parameter ranges for this study are 

exhibited in Table 3. The optimal parameter 

ranges are determined with the help of the 

validation dataset. 

 

Table 3 

The optimal range of tuning parameters for 

SVM, K-nn, and XGB algorithms. 

 

Model Tuning 

parameters 
Search 

range 
Optimal 

range 

 

SVM 
 
 

K-nn 

 

 
XGB 

C 

γ 
 

K 

Learning 

rate 

Min child 

weight 

Max depth 

0.1 – 1000 

0.00001 - 

0.01 

1-10 

0.01 - 0.3 

 
0.1 - 100 

 

3 - 10 

0.1 - 100 

0.00001 - 

0.0001 

6 - 10 

0.01 - 0.1 

 
60 - 100 

 

3 - 6 

 

 

5. Results  

5.1 Model Performance  
In this study, we make an attempt to 

design experiments to emulate the real-world, 

so experiments are divided into three 

conditions. Moreover, each experiment is 

iterated 5 times to reduce the effect of the 

random seeds. The average accuracies with 

standard deviation are shown in Table 4. 

Results suggest that XGB and SVM give 

comparable results, although XGB gives the 

highest overall prediction accuracy at 90.67% 

(s = 8.21). SVM accuracy at 89.60% (s = 

10.40) whereas K-nn provides the lowest 

accuracy at 88.84% (s = 9.92).  

 

Table 4 

Classification accuracies of each algorithm. 

(s stands for standard deviation) 

 

Model Accuracy 

EX I               EX II              EX III 

SVM 

 
KNN 

 
XGB 

90.55% 

(s = 7.73) 

87.85% 

(s = 11.05) 

91.38% 

(s = 9.04) 

93.92% 

(s = 2.62) 

92.99% 

(s = 3.44) 

93.56% 

(s = 2.20) 

84.32% 

(s = 20.86) 

85.69% 

(s = 15.28) 

87.07% 

(s = 13.39) 

 

5.2 Confusion matrix 
The results of confusion matrices from 

three scenarios show that the classifiers predict 

basalt, tuff, and rhyolite accurately. Other 

classes such as vitrophyre and sedimentary 

rocks tend to be misclassified to three classes 

above. For example, in WO2 well in 

Experiment I, every classifier predicts basalt 

class accurately, with over 95% of accuracy but 

more than 35% of conglomerate class is 

predicted to basalt (Figure 3). This is because 

sedimentary rocks are classified by grain size, 

which is difficult to determine with well 

logging data. The second reason is the effect of 

imbalanced classes. Since these wells were in a 

volcanic area, the vast majority of the data is 

volcanic rocks such as basalt and rhyolite. As a 

result, the classifiers have more instances to 
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learn the characteristics of volcanic rocks than 

the other classes. Furthermore, the effect of 

imbalanced classes encourages the models to 

dramatically recall the major classes more so 

than the minor classes. One of the particular 

examples is SVM in which predicts classes in 

three classes for WO2 well in Experiment I: 

basalt, claystone, and tuff as shown in Figure 3. 

As a result, the classification accuracy of these 

three classes is over 95% and the overall 

classification accuracy of WO2 well in 

Experiment I is about 90%. As every classifier 

predicts the major classes accurately in every 

experiment, the best classifier is decided by the 

prediction of the minor classes. Consequently, 

XGB achieves the highest accuracy in 

lithological classification because of its 

capacity to predict the minor classes precise 

than the other classifiers. 

 

 

 

 
 
Figure 3 Normalized confusion matrix of three 

classifiers of seven rock types in the prediction of 

WO2 well (a) SVM, (b) K-nn, and (c) XGB. 

 

6.Discussion 
Previous studies (e.g. Dubois et al. 

(2007); Konaté et al. (2015); Xie et al. (2018)) 

uses various classical parametric methods such 

as linear, quadratic and Mahalanobis, fuzzy 

logic and machine learning algorithms such as 

Artificial Neural Network (ANN), SVM, K-nn, 

and Gradient tree boosting to evaluate 

lithological classification in Experiment I. 

Gradient tree boosting gives the highest f1 

score at 82% in Xie et al. (2018) while ANN 

has the highest f1 score at 68% in Dubois et al. 

(2007). ANN achieves the best performance in 

Konaté et al. (2015). In this study, XGB 

exhibits approximately 91% of classification 

accuracy in Experiment I. Results of  Xie et al. 

(2018) is comparable to our study because 

XGB and gradient tree boosting are a subset of 

random forests. A study by Dubois et al. (2007) 

and Konaté et al. (2015) shows that ANN is 

better than K-nn and SVM. However, random 

forests was not applied in their study. The 

results from each study are different because all 

classes in Xie et al. (2018) and Dubois et al. 

(2007) are sedimentary rocks, which feature 

values are varied by both composition and 

grain size. The classes of Konaté et al. (2015) 

are metamorphic and igneous rocks: 

orthogneiss, paragneiss, eclogite, amphibolite, 

and ultramafic rocks. For this study, the major 

classes are igneous rocks. Not only are the rock 

types different, but also the collected features 

are varied. Moreover, Lopes and Jorge (2017) 
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uses ANN, Random Forests, and three 

algorithms of linear regression to fill the 

missing values in well logging data (regression 

task). Although ANN performs better than the 

other algorithms, the statistical difference is not 

significant. This informs that each machine 

learning algorithms are applicable to various 

tasks depending on types of problem and data. 

Even if task and data are almost the same, for 

example well logging data, the efficiency of 

algorithms is still depended on the study area. 

The experimental design in second and 

third scenarios are more realistic in geophysical 

application. To change experimental design, 

the results from the classifiers are dissimilar to 

Experiment I. A study by Bestagini et al. 

(2017) uses the same data from Dubois et al. 

(2007) but the classifiers are tested under 

Experiment II. Results suggest that gradient 

tree boosting provides the highest f1 score at 

61% while the winner of Experiment I gives 

68% of f1 score. Nevertheless, our results show 

that the classifiers evaluated on Experiment II 

give higher accuracy than Experiment I. This is 

because rock types or classes are grouped into 

three classes in the second condition. By doing 

this, the difficulty of the task has decreased 

because of reducing variety and specification 

of classes or rock types. Furthermore, SVM 

gives the highest accuracy score in Experiment 

II but there is no significant difference (less 

than 1%). In contrast, the accuracy of the 

classifiers evaluated in Experiment III is lower 

than Experiment I because of different sets of 

features or types of well logs. The number of 

features in Experiment III (15 features) is more 

than Experiment I (4 - 14 features) because 

features in each well are combined. To prepare 

the data in the same format, the uncollected 

features in each well are valued at -999.25. 

Although this leads data to be noisier, it makes 

the data to be trainable. 

The models are expected to be used on 

data come from different wells, similar to 

Experiments II and III. By merging data from 

different wells, two issues have emerged from 

the data: different sets of classes and features. 

Regarding the study area, lithological 

classification and the collected feature in each 

well are varied by the objectives of the study 

(Table 1 and 2). The models cannot predict the 

classes which are not included in training data 

and they cannot be trained with the dataset 

which has different sets of features. Therefore, 

the data should be turned into the same format 

in term of classes and features. The former is 

solved by class grouping, reduces the variety 

and specification of rock types. For instance, 

seven classes (BS, CS, CG, SS, ST, TF, and 

VP) in WO2 well are grouped into three classes 

(basalt, sedimentary rock, and the other) in 

Experiment II. By doing this, gamma ray is the 

only feature that helps with classification in 

Experiment II because it refers to the volume 

of the radiometric elements in the rock 

formations. The latter is tackled by replacing 

missing value with -999.25. This has an 

adverse effect on the efficiency of most 

Figure 4 The used features by XGB in Experiment I. Feature score represents the importance of 

each feature in classification 
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algorithms excepted XGB. For example, SVM 

generates decision boundaries from training 

data since replacing missing value with -999.25 

shifts the decision boundaries from the optimal. 

Likewise, it increases the distance between the 

test data points and the optimal training data 

points in K-nn. However, replacing missing 

value with            -999.25 do not affect XGB 

because it can select the used features on its 

own. Figure 4 presents the importance of each 

feature which is used by XGB. The information 

shows that some features which is 0% of 

feature scores are not used for the 

classification. There are other techniques to fill 

the missing values. For example, Lopes and 

Jorge (2017) applies machine learning 

algorithms to predict the missing values from 

the remaining well logging data but they used 

600,000 data points for regression.  

Class imbalance is another problem for 

this dataset. The effect of imbalance classes 

causes the classifiers to recall the major classes 

more so than the minor classes. As result, the 

minor classes are misclassified into the major 

classes. This effect influences the classifiers 

using the decision surfaces for classification 

such as SVM than the other. This is because 

decision surfaces which are generated from 

small data points are not fully comprehensive 

the distribution of classes. This problem can be 

solved by up-sampling or down-sampling. Up-

sampling is to randomly generate pseudo minor 

classes from the minor classes and down-

sampling is to randomly eliminate major 

classes. However, we cannot do that on this 

dataset because the minor classes are too small. 

Moreover, standardization and variance scaling 

are not helpful for this dataset. We try to scale 

data and standardize the data but it gives the 

worse results than original data. This is because 

the original well logging data represent the 

characteristics of the rock types and the 

importance of each feature for this dataset. 

Furthermore, classifying sedimentary rock is 

the challenge for well logging interpretation. 

As sedimentary rocks are determined by grain 

size and there are no logging tools detecting 

grain size directly, this is hard to classify 

sedimentary rock by machine learning 

algorithms accurately. Hence, the other 

methods should be applied to improve the 

performance of the classifiers in classifying 

sedimentary rock. For example, Bestagini et al. 

(2017) adopts feature argumentation. As a 

result, the accuracy of the classifier improves 

55% to 61%. 

Consequently, feature engineering 

should be done in further study to ameliorate 

the performance of the classifiers. Moreover, 

the tuning parameter is another issue because it 

affects model performances to much as shown 

in Figure 5. This study uses the validation 

subset to determine the tuning parameters. 

However, the results from the validation subset 

do not always be compatible with the test 

subset. 

 

XGB in Experiment I 

Learning rate 

 
Max depth 

  
Min child weigh 
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Figure 5 The effect of tuning parameter to the 

accuracy of XGB in Experiment I. Red lines 

represent test subset and green lines represent 

validation subset. 

 

Each of classifiers has different benefits 

and drawbacks and they are suitable with 

various dataset. SVM is a generalized 

algorithm because it considers merely support 

vectors (Smirnoff et al., 2008). By doing this, 

SVM can avoid noise and ambiguous data. 

However, its generalization leads SVM to 

misclassify the minor classes and SVM spends 

the longest time in the training phase. K-nn is 

suitable for the data which are no explicit 

knowledge and there is no time spent in the 

training phase for K-nn. K-nn is over-reliant on 

training data because it does not assign any 

assumption into the data (Glowacz and 

Glowacz, 2016). There is no feature weigh 

function and noise filter for K-nn. Hence, 

feature selection and cleaning data greatly 

influence the performance of K-nn than other 

algorithms. Results from Xie et al. (2018), 

Bestagini et al. (2017), and this study present 

that XGB or Gradient tree boosting exhibits the 

highest the classification accuracy for 

lithological classification using well logging 

data. This is because XGB can select the used 

features in its own without human influence. 

Figure 6 shows the importance of each feature 

for this dataset in Experiment III. Gamma ray, 

temperature, and neutron logs are important 

features to classify the rocks in SRP in which is 

dominated by volcanic rocks. As humans do 

not have the capacity to know which features 

are appropriate for each algorithm, it is better if 

algorithms choose the used features by itself. 

As a result, XGB can recognize that -999.25 is 

missing value for this dataset and it does not 

use this value in classification. Moreover, XGB 

classifies the data by decision trees which 

generate if-clause rules from characteristics of 

training data to classify test data. This is close 

to how human classify the data since XGB is 

appropriate with well logging data which is 

invented for the human to classify rock types. 

For further study, hybrid models for well 

Figure 6 Average feature importance scores of types of well logs in XGB algorithm from 

Experiment III. 
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logging classification should be used. The 

hybrid model is the new machine learning 

algorithm which combines the advantages of 

more than one models since its performance 

might be better than the ordinary model. For 

example, Zhu et al. (2016) and Zhu et al. 

(2018) apply the hybrid model between ANN 

and random forest to predict permeability and 

total organic carbon using well logging data, 

respectively. Results show that the hybrid 

model gives a lower error than both ANN and 

random forest.      

7. Conclusions 
 Three machine learning algorithms are 

employed under three conditions in this study 

in order to evaluate the performance of each 

classifier and identify the most suitable 

algorithm for the well logging data of SRP 

located in Idaho, USA. Results suggest that 

XBG shows the highest accuracy in lithological 

classification. K-nn and SVM give acceptable 

results in well logging interpretation even if K-

nn exhibits the lowest accuracy. This study 

covers both individual and combined well tests. 

For further study, the task which some classes 

are more important than the other classes 

should be done. Well logging data from 

petroleum is a case in point. The oil bed is 

more important than other rocks so this class 

should be predicted accurately than other 

classes. Feature engineering should be applied 

in a further study to incorporate information 

about grain and pore size and to improve model 

performance. Last but not least, the hybrid 

models should be developed to improve the 

efficiency of well logging classification.  
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